Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 266: 104647, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35779762

RESUMO

OBJECTIVE: To identify gingival recession-related biomarkers in orthodontic patients, we compared the proteome of gingival crevicular fluids (GCF) from healthy gingiva without orthodontic treatment (GH), healthy gingiva undergoing orthodontic treatment (OGH), and recessed gingiva undergoing orthodontic treatment (OGR). METHODS: GCF samples were obtained from the anterior teeth of 15 volunteers (n = 5/group). Quantitative proteomic analysis was performed using DIA-based liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to annotate differentially expressed proteins (DEPs). Receiver-operating characteristic (ROC) analysis was performed to detect and filter biomarker candidates, while Protein-Protein Interaction (PPI) Networks were utilized to determine the interactions between these DEPs. RESULTS: A total of 253, 238, and 101 DEPs were found in OGR vs. OGH, OGR vs. GH, and OGH vs. GH groups, respectively. Based on the Venn diagram of three groups, 128 DEPs in OGR vs. OGH group were identified as specific proteins associated with progressive gingival recession (GR) during orthodontic treatment. Molecular function analysis showed that 128 DEPs were enriched in "molecular binding", including antigen binding, RNA binding, double-stranded RNA binding, cadherin binding involved in cell-cell adhesion, vinculin binding, S100 protein binding, and Ral GTPase binding. The majority of these DEPs were also involved in cytoskeletal regulation. In addition, biological process analysis showed an enrichment in translation, while cellular component analysis indicated that 128 DEPs were related to extracellular exosome. Furthermore, Ribosome and Phagosome were the top two terms in KEGG analysis. The results of ROC analysis demonstrated that 26 proteins could be potential biomarker candidates for GR. PPI networks analysis predicted that IQGAP1, ACTN1, TLN1, VASP, FN1, FERMT3, MYO1C, RALA, RPL35, SEC61G, KPNB1, and NPM1 could be involved in the development of GR via cytoskeletal regulation. CONCLUSIONS: In summary, we identified several GCF proteins associated with GR after orthodontic treatment. These findings could contribute to the prevention of GR in susceptible patients before the initiation of orthodontic treatment. SIGNIFICANCE: Orthodontic patients with GR often report esthetic defects or root hypersensitivity during orthodontic treatment, especially at the anterior teeth site. GCF, rich in protein, is an easily accessible source of potential biomarkers for the diagnosis of periodontal diseases; however, little is known about the changes in GCF proteome associated with GR in orthodontic patients. In this study we firstly used DIA-based LC-MS/MS to evaluate the proteome and to identify the biomarker candidates for GR in orthodontic patients. These findings will improve our understanding of GR during orthodontic treatment, and could contribute to an earlier diagnosis, or even prevention, of GR in susceptible populations before orthodontic treatment.


Assuntos
Retração Gengival , Proteômica , Biomarcadores/análise , Cromatografia Líquida , Líquido do Sulco Gengival/química , Líquido do Sulco Gengival/metabolismo , Retração Gengival/metabolismo , Humanos , Proteoma/análise , Proteômica/métodos , Canais de Translocação SEC/análise , Canais de Translocação SEC/metabolismo , Espectrometria de Massas em Tandem
2.
Nat Commun ; 8(1): 370, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851864

RESUMO

Self-complementing split fluorescent proteins (FPs) have been widely used for protein labeling, visualization of subcellular protein localization, and detection of cell-cell contact. To expand this toolset, we have developed a screening strategy for the direct engineering of self-complementing split FPs. Via this strategy, we have generated a yellow-green split-mNeonGreen21-10/11 that improves the ratio of complemented signal to the background of FP1-10-expressing cells compared to the commonly used split GFP1-10/11; as well as a 10-fold brighter red-colored split-sfCherry21-10/11. Based on split sfCherry2, we have engineered a photoactivatable variant that enables single-molecule localization-based super-resolution microscopy. We have demonstrated dual-color endogenous protein tagging with sfCherry211 and GFP11, revealing that endoplasmic reticulum translocon complex Sec61B has reduced abundance in certain peripheral tubules. These new split FPs not only offer multiple colors for imaging interaction networks of endogenous proteins, but also hold the potential to provide orthogonal handles for biochemical isolation of native protein complexes.Split fluorescent proteins (FPs) have been widely used to visualise proteins in cells. Here the authors develop a screen for engineering new split FPs, and report a yellow-green split-mNeonGreen2 with reduced background, a red split-sfCherry2 for multicolour labeling, and its photoactivatable variant for super-resolution use.


Assuntos
Proteínas Luminescentes/química , Microscopia de Fluorescência/métodos , Engenharia de Proteínas , Canais de Translocação SEC/análise , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Transporte Proteico , Canais de Translocação SEC/química , Canais de Translocação SEC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...